
Abstract. This work describes a new and low-scaling
implementation of the polarizable continuum model
(PCM) for computing the self-consistent solvent reaction
field. The PCM approach is both general and accurate. It
is applicable in the framework of both quantum and
classical calculations, and also to hybrid quantum/clas-
sical methods. In order to further extend the range of
applicability of PCM we addressed the problem of its
computational cost. The generation of the finite-elements
molecular cavity has been reviewed and reimplemented,
achieving linear scaling for systems containing up to 500
atoms. Linear scaling behavior has been achieved also for
the iterative solution of the PCM equations, by exploit-
ing the fast multipole method (FMM) for computing
electrostatic interactions. Numerical results for large
(both linear and globular) chemical systems are dis-
cussed.

Keywords: Continuum solvent model – Finite-elements
molecular surface – Linear-scaling fast multipoles
method

1 Introduction

In order to achieve quantitative accuracy in the compu-
tational simulation of molecules and chemical processes,
the key importance of solvent effects is nowadays
established [1, 2, 3, 4]. Solute–solvent interactions
modify the energy, the structure, the properties and
thus the overall behavior of molecules. Both in the case

of classical simulations and in the case of quantum
methods, an accurate model for the description of
solvent effects should be part of any computational
strategy.

Both discrete [5, 6, 7] and continuum [8, 9, 10] solvent
models have been devised. Among them the polarizable
continuum model (PCM) [11, 12] is characterized by a
general and robust formalism, great flexibility and good
accuracy. According to this model, the solvent is repre-
sented by a continuum dielectric medium within which a
cavity is dug to host the solute molecule. The mutual
polarization of the solute and the dielectric is computed
and the solvent reaction field is then represented by a
number of apparent solvation charges (ASCs) placed on
the solute–solvent boundary (i.e. the cavity surface). The
solution of the required electrostatic problem is achieved
by a finite-elements approach: the cavity surface is par-
titioned in small tiles, the tesserae, where the ASCs are
located.

The flexibility of the PCM lies in the fact that it can be
easily cast both in the framework of classical calculations,
such as molecular mechanics (MM) or molecular dynam-
ics simulations, and in the case of quantum methods
(Hartree–Fock, density functional theory, perturbative
and variational correlated methods) [13]. Given this
generality, the PCM has also been introduced to describe
solvent effects in hybrid quantum/classical approaches
andmixedmethods, such as the ownN-layered integrated
molecular orbital method (ONIOM) andMMmethod.

Another important aspect of the PCM is that it can
be used to reduce the complexity of a discrete description
of the solvent. This is particularly useful when the solute
establishes specific interactions with few solvent mole-
cules and these interactions are responsible for a signif-
icant change in the solute properties. In such cases a
discrete description of the solvent is unavoidable, but it
can be limited to the few molecules specifically inter-
acting with the solute, while the effect of the solvent
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‘‘bulk’’ can be accounted for using the PCM approach
[15]. The exact locations of the explicit solvent molecules
around the solute can be found simply by energy mini-
mization or can be extracted from a dynamics simula-
tion.

From the algorithmic point of view, the PCM reac-
tion field is computed from the solution of a linear
system of equations of dimension equal to the number
of finite elements (number of tesserae NTs) in which the
cavity surface has been partitioned. The coefficient ma-
trix of the linear system depends on the geometric fea-
tures of the cavity (location, surface area and normal
vector of all tesserae), the unknowns are the polarization
charges (i.e. the ASCs) and the right-hand side involves
either the total electrostatic potential or the electric field
generated by the solute on the tesserae. The PCM linear
system can be solved either by matrix inversion or
iteratively. The cost of computing the PCM reaction
field used to be usually negligible if compared to other
steps in an ab-initio calculation (e.g. Fock matrix
building and diagonalization). Nowadays this is no
longer true.

On the one hand, in the field of ab initio methods, fast
algorithms whose cost grows linearly with the system
size (e.g. the fast multipole method (FMM)) have been
developed and are beginning to be widely available and
applied [16]. On the other hand, the significant reasearch
effort being devoted to hybrid quantum/classical ap-
proaches [17] is driving the PCM towards the handling
of large (partly) classical solutes. Note that, in this
context, any solvent model has always to deal with the
whole real system, which could easily involve thousands
of atoms.

Given the methodological and algorithmic advances
cited already, the cost of calculating the PCM reaction
field could easily become the computational bottleneck.
Indeed, whenever fast and linear scaling algorithms,
such as the FMM, are used to compute the electrostatic
potential/field on the tesserae, the cost of evaluating the
interaction of the polarization charges among them-
selves will grow more steeply and will rapidly become
dominant as the number of tesserae increases. Moreover,
the definition of the solute–solvent boundary of the fi-
nite-elements (the cavity) can also represent a very costly
task. In particular, in order to include the proper cavity
deformation contribution into the energy gradient, such
a boundary surface needs to be fully analytically defined
and differentiable with respect to the atomic coordinates.

In conclusion, an efficient and low-scaling reformu-
lation of the whole PCM procedure (beside the calcu-
lation of the solute electrostatic potential/field at the
tesserae) has to be sought and implemented. This will be
equally useful for classical and quantum solutes, as the
cost of the cavity generation and of the solution of the
PCM linear system no longer depends on the nature of
the solute once its electrostatic potential/field has been
computed. This paper describes such a new PCM
implementation, which meets the efficiency requirements
just described and that will be available in the upcoming
release of the Gaussian package. In this contribution we
consider only classical solutes since this allows us to
scale the structures up to thousands of atoms to properly

investigate the computational cost of the various steps in
the procedure on a broad range of systems size. The
nature of the solute–solvent boundary is described in
Sect. 2, while the equations which define the PCM
reaction fields for both classical and quantum solutes are
described in Sect. 3. In Sect. 4 we describe in some detail
the linear-scaling iterative solver we have developed.
Finally, in Sect. 5 we use two sets of large chemical
structures to asses the performances of the new cavity
code and of the iterative solver.

2 Solute–solvent boundary

The definition of the solute–solvent boundary, i.e. the
cavity surface, is one of the key steps in PCM
calculations. The solute (a single molecule or a cluster
containing some explicit solvent molecules) needs first to
be represented by a set of interlocking spheres centered
on atoms or atomic groups. Many different choices are
available for the radii of such spheres. Nonetheless, it is
important to select a consistent set of radii since the
solvent effects computed on energies and properties
depend critically on the size of the cavity.

For ‘‘all-atoms’’ representations we recommend the
use of the universal force field (UFF) set of radii [18],
mainly because of its generality (it is defined for the
whole periodic system), although other choices are
possible, such as Pauling’s [19] or Bondi’s [20] set of
radii. On the other hand, for ‘‘united-atom’’ models, we
have developed the so-called united atom topological
model (UATM) [21] in which hydrogens are assimilated
within the sphere of the heavy atom to which they are
bound. The radii of the spheres are then computed
according to a set of rules based on the atomic number,
the hybridization, the formal charge of the atom and the
nature of its first neighbours. The UATM model is
particularly recommended for solvation energy calcula-
tions using ab initio methods.

Once the initial set of spheres is defined, the cavity
surface is smoothed by adding spheres whose positions
and radii are computed by a new version of the GePol
algorithm [22, 23, 24]. The topological boundary of the
final set of interlocking spheres is thus an accurate
approximation of the so-called solvent excluding surface
(SES) [25], but it is made only by convex patches. This is
obviously one of the possible definitions of the solute–
solvent boundary, but it has been proven to be the best
choice for the calculation of the mutual solute–solvent-
electrostatic interaction. Two other widely used defini-
tions of molecular cavity are the van der Waals (VdW)
surface, which is just the topological boundary of the
initial set of interlocking spheres, and the solvent
accessible surface (SAS) [26], which is defined as the
VdW surface once all the radii of the initial spheres have
been augmented by the radius of the sphere representing
a solvent molecule. Both the VdW and the SA surfaces
are relevant in the framework of the PCM since they are
used to compute the nonelectrostatic contributions to
the free energy of solvation, according to a well-estab-
lished parameterization of such solute–solvent interac-
tions.
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The surface finite elements (tesserae) are then gener-
ated by inscribing a polyhedron with faces of suitable
size and number within each sphere, projecting the faces
onto the spherical surface and discarding those which
are fully inside an intersecting sphere. If a polyhedron
face happens to be partially inside a neighbouring
sphere, the exposed portion is analytically cut by adding
edges to the tessera being generated. All the tesserae (the
finite elements) are thus defined in terms of connected
arc segments, and their surface areas (the integration
weights) can be analytically computed using the Gauss–
Bonnet formula [23]. Moreover, this method of adding
extra spheres to smooth the cavity surface, together with
the definition of the tesserae in terms of connected arc
segments, allows the calculation of the analytical deriv-
atives, with respect to the atomic coordinates, of both
the centroid and the surface area of all the tesserae.
These are indeed required for a correct calculation of the
solute energy gradient which involves a term related to
the change in the molecular surface and thus in the
reaction field.

Recently the algorithm for generating the whole set of
spheres and tesserae and for computing their derivatives
has been reviewed and extended [24]. The computer code
which implements such an algorithm has also been
rewritten from scratch. The aim of this effort was the
development of a robust and efficient code suitable for
applications to very large systems (up to tens of thou-
sands of atoms and to hundreds of thousands of tes-
serae). In order to do that without prohibitively
increasing the computational cost, we focused on the use
and development of linear scaling procedures starting
from the simple form of the GePol algorithm available in
Gaussian98 [27], which showed cubic cost and limited
robustness, already for solutes made by few tens of
atoms.

The most important features of the new implemen-
tation of the cavity code are the following:

1. The position and the shape of all the tesserae are
constrained to have the same symmetry properties of
the solute. To do that, we devised a simple approach
in which the polyhedra inscribed in the spheres are
chosen and oriented so that the ensemble of their
faces conforms to the molecular point group. This
feature is particularly important in ab initio calcula-
tions to preserve the symmetry of the density matrix
once the PCM correction is added to the solute
Hamiltonian.

2. The whole algorithm has been generalized to handle
periodic boundary conditions. Translational symme-
try in one, two or three dimensions can be imposed
and also the presence of screw axes or glide planes
can be handled. These features are important for the
study of the solvent effects in periodic systems like
polymer chains or wet surfaces.

3. Given the initial set of interlocking spheres, the
sphere’s neighbor list (NL) should be obtained with
linear-scaling computational cost. The NL lists, for
each sphere, the nearby spheres that intersect it. The
spheres NL is particularly important since it allows us
to set an upper limit to the length of loops during the

generation of the tesserae. The generation of the
sphere’s NL it is a well-known problem in computa-
tional geometry, whose trivial solution scales qua-
dratically with the number of spheres, and in the new
cavity code we implemented two efficient low-scaling
algorithms to carry out this task.

4. An effective prescreening algorithm has been devel-
oped to reduce the number of polyhedron faces which
must be examined during the tesserae generation.
This approach allows us to discard very fastly all the
faces that are either completely buried inside a sphere
or completely exposed to the solvent.

5. The computational cost of the algorithm to create the
extra spheres required by the SES, in its trivial
implementation, increases cubically with the number
of spheres; thus, a major effort has been devoted to
reduce this scaling. Using various techniques to speed
up the collision check that the candidate new sphere
need to pass, we reduced this scaling behavior from
cubic to weakly quadratic.

3 Reaction field

Within the PCM framework, the solvent reaction field
due to an isotropic solvent is expressed in terms of a
polarization charge density, rðsÞ, spread on the solute–
solvent boundary surface, which is the solution of the
following integral equation:

�þ 1

�� 1
� 1

2p
D̂�

� �
rðsÞ ¼ � 1

2p
E?ðsÞ ; ð1Þ

where � is the solvent dielectric constant, E?ðsÞ is the
normal component of the electric field generated by
the solute at the cavity surface and D̂� is an operator
that accounts for the electric field generated by r
itself. The equation is exact when all the solute charge
distribution is strictly enclosed by the cavity, as in the
case of a classical solute. On the other hand, when the
solute is represented by a quantum mechanical method
or, more generally, it is described by a mixed
quantum/classical approach, one has to deal with the
so-called outlying charge, which is the (small) fraction
of the solute charge density which lies outside the
cavity because of the tails of the electronic wavefunc-
tion.

Recently, the PCM formalism has been reviewed [12,
13] and it is now understood that the effect of the
‘‘outlying charge’’ can be taken into account implicitly,
thus avoiding any a posteriori correction of the reaction
field to fulfill Gauss’ law. In particular, Eq. (1) is gen-
eralized to the following form

�þ 1

�� 1
Ŝ � 1

2p
ŜD̂�

� �
rðsÞ ¼ �1þ 1

2p
D̂

� �
V ðsÞ ; ð2Þ

where V ðsÞ is the total electrostatic potential generated
by the solute at point s on the cavity surface and the
operator Ŝ is related to the surface charge potential.
Note that in this formalism the polarization charge
density rðsÞ depends on the solute potential and not on
the field as in Eq. (1).
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A detailed derivation and description of the formal-
ism have been already published [13] and they are thus
omitted here. Also the finite-elements formulation of the
method and the corresponding working equations are
available elsewhere. However, in order to develop the
iterative solution of the PCM problem in the next sec-
tion, we need to recall

1. The definitions of the S, D� and D matrices (which are
the finite-elements representation of the Ŝ, D̂� and D̂
operators):

Sii ¼ 1:0694

ffiffiffiffiffiffi
4p
ai

s

Sij ¼
1

jsi � sjj

8>>>><
>>>>:

; ð3Þ

D�ii ¼ � 2pþ
X
j 6¼i

D�jiaj

 !
1

ai

D�i j ¼ �ðsi � sjÞ � n̂i

jsi � sjj3

8>>>><
>>>>:

; ð4Þ

Dii ¼ � 2pþ
X
j 6¼i

Dijaj

 !
1

ai

Dij ¼
ðsi � sjÞ � n̂j

jsi � sjj3

8>>>><
>>>>:

; ð5Þ

where ai is the area of the ith tessera, si is its position
vector and n̂i is the unit vector normal to the cavity
surface at si.

2. The matrix equations that correspond to
Eq. (1), which hold for the special case of classical
solutes:

2p
�þ 1

�� 1
A�1 �D�

� �
q ¼ �E? ; ð6Þ

where A is a diagonal matrix collecting the tesserae
surface areas, q is the polarization charges array and
E? collects the values of the solute normal electric
field at the tesserae.

3. Thematrix equations that correspond to Eq. (2), which
hold in general for quantum and classical solutes:

Tq ¼ RV ; ð7Þ

where q is the polarization charges array, V collects
the values of the solute potential at the tesserae and
the T and R matrices are defined as follows

T ¼ �þ 1

�� 1
S� 1

2p
DAS ð8Þ

and

R ¼ �Iþ 1

2p
DA ð9Þ

using the previous definitions of the A, S, D� and D
matrices.

4 Iterative formulation

Before describing the iterative procedures required for
the solution of the PCM equations, for both classical
and quantum solutes, we define some useful quantities.
These are not only used to cast the subsequent
expressions in a more compact form, but also provide
a clear way to identify the computational kernels which
need to be carried out in order to obtain overall linear
scaling behavior.

The first quantity is the vector function y½x�, whose
elements are defined as

yi½xj� ¼
X
j 6¼i

Sijxj ; ð10Þ

where Sij are the elements of the ‘‘potential’’ matrix
defined in Eq. (3). We also define z�½x� and z½x� as

z�i ½xj� ¼
X
j 6¼i

D�ijxj ð11Þ

and

zi½xj� ¼
X
j 6¼i

Dijxj ; ð12Þ

where D�ij and Dij are the elements of the ‘‘field’’ (Eq. 4)
and ‘‘normal field’’ (Eq. 5) matrices, respectively.

In the case of classical solutes, the polarization
charges are obtained by solving system 6. Recalling the
definition of the D� and D matrices, the i-th equation of
such system can be written as

1

ai

4p�
�� 1

þ zi½aj�
� �� �

qi � z�i ½qj� ¼ �ðE?Þi ; ð13Þ

which is solved iteratively setting

qðnÞi ¼
1

ai

4p�
�� 1

þ zi½aj�
� �� ��1

�ðE?Þi þ z�i ½q
ðn�1Þ
j �

h i
;

ð14Þ
where qðnÞi and qðn�1Þi are the charges at the nth and
ðn� 1Þth iteration, respectively.

When the solute charge distribution extends outside
the cavity (typically in the case of ab initio calculations),
one has to compute the polarization weights, w, as

w ¼ qþ q�

2
; ð15Þ

where q are the polarization charges and q� can be
defined as ‘‘transposed’’ polarization charges. The q are
the solutions of the linear systems of equations

Tq ¼ b ¼ RV ; ð16Þ

while the q� can be obtained as

q� ¼ ðT�1RÞyV ¼ RyðTyÞ�1V ; ð17Þ
where, setting

c ¼ ðRyÞ�1q� ð18Þ
and solving the linear system
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Tyc ¼ V ; ð19Þ
one just need to carry out the matrix–vector product

q� ¼ Ryc ð20Þ

to obtain the q�.
In more detail, we first consider b ¼ RV, which is the

right-hand-side of system 16. Recalling the definition of
the R matrix (Eq. 9), the ith element of b can be written
as

bi ¼ �Vi þ
1

2p

X
j

DijajVj

¼ �Vi 2þ 1

2p
zi½aj�

� �
þ 1

2p
zi½ajVj�

ð21Þ

and the ith equation of system 16 is

X
j

�þ 1

�� 1

� �
Sijqj �

1

2p

X
jk

DikakSkjqj ¼ bi ; ð22Þ

which, by recalling the definition of the D matrix
diagonal elements (Eq. 5) and performing some manip-
ulations, becomes

f ð�Þ þ 1

2p
zi½aj�

� �
ðSiiqi þ yi½qj�Þ

� 1

2p
zi½ajðSjjqj þ yj½qk�Þ� ¼ bi ; ð23Þ

where f ð�Þ ¼ ð�þ 1Þ=ð�� 1Þ þ 1. Equation (23) can be
solved iteratively expressing the charge qi at iteration n
as

qðnÞi ¼ f ð�Þ þ 1

2p
zi½aj�

� �
Sii

� ��1
bi � f ð�Þ þ 1

2p
zi½aj�

� ��

�yi½qðn�1Þj � þ 1

2p
zi½ajðSjjq

ðn�1Þ
j þ yj½qðn�1Þk �Þ�

�
: ð24Þ

On the other hand, the ith equation of system 19 is

X
j

�þ 1

�� 1

� �
Sijcj �

1

2p

X
jk

SikakD�kjcj ¼ Vi ; ð25Þ

which can be manipulated by inserting the definition of
the D� matrix diagonal elements (Eq. 4) and using the
fact that D is the transpose of D�, leading to the
following expression

f ð�Þ þ 1

2p
zi½aj�

� �
Siici þyi f ð�Þ þ 1

2p
zj½ak�

� �
cj

� �

� 1

2p
Siiaiz�i ½cj� þ yi½ajz�j ½ck��
� �

: ð26Þ

The iterative solution of these equations is achieved by
expressing the ci elements as

cðnÞi ¼ f ð�Þþ 1

2p
zi½aj�

� �
Sii

� ��1
bi�yi f ð�Þþ 1

2p
zj½ak�

� ���

� cðn�1Þj

i
þ 1

2p
Siiaiz�i ½c

ðn�1Þ
j �þyi½ajz�j ½c

ðn�1Þ
k ��

� ��
; ð27Þ

and, after system 19 has been solved, the ‘‘transposed
charges’’ are obtained as q� ¼ Ryc, where q�i is

q�i ¼ �ci þ
ai

2p

X
j

D�ijcj

¼ �ci 2þ 1

2p
zi½aj�

� �
þ 1

2p
aiz�i ½cj� : ð28Þ

4.1 Iterative solvers and preconditioning

We have implemented three different iterative algorithms
to solve systems 6, 16 and 19. We also chose tight
convergence (10�9) criteria on both the root mean
square and maximum residue. While this is probably not
required to achieve microhartree accuracy on the free
energy, it is necessary in order to compute an accurate
gradient of the energy with respect to, for example,
atomic degrees of freedom. Indeed, analytical gradients
are available for both the PCM models discussed in this
paper [13] as well as for the conductor-like PCM model
[28, 29].

The first algorithm exploits the expression for the ith
unknown at iteration n as a function of the other un-
knowns at the previous iteration. Each iteration involves
one matrix–vector multiplication where the diagonal of
the matrix is missing. The diagonal elements, i.e. the first
terms on the right-hand side of Eqs. (14), (24) and (27),
do not depend on the unknowns and are thus precom-
puted and reused at each iteration. To accelerate the
convergence we use the direct inversion of the iterative
subspace (DIIS) method [30], which turned out to be
mandatory in order to obtain convergence in a reason-
able number of iterations. Thus, in the following we
identify this first algorithm simply as DIIS. The storage
requirement scales linearly with the number of iterations
involved in the DIIS extrapolation as the intermediate
residues and unknown vectors need to be saved.

The second and third algorithms are standard itera-
tive solvers for nonsymmetric matrices [31]. The conju-
gate gradient squared (CGS) and biconjugate gradient
stabilized (BiCGStab) methods are both derived from
the simple biconjugate gradient method, but do not in-
volve the product by the transposed matrix and should
provide faster and/or smoother convergence behavior.
The cost per iteration is roughly twice the cost of a DIIS
iteration since two matrix–vector multiplications are
involved in this case. On the other hand, the storage
requirement is just a constant number of times the size of
the unknown vector.

In order to accelerate the convergence of both the
CGS and BiCGStab methods, we implemented two
preconditioning schemes. The first one (type 1) is simply
the so-called Jacobi diagonal preconditioner where the
full matrix is approximated by its diagonal. As previ-
ously said, the diagonal elements do not depend on the
unknowns and are thus precomputed and reused at each
iteration. The second scheme (type 2) is a sphere-based
nonoverlapping block-diagonal preconditioner. In this
case the full matrix is approximated by a block-diagonal
one where the blocks correspond to the tesserae
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belonging to the same atomic or added sphere. The
linear systems defined by these blocks are solved exactly
by LU decomposition with partial pivoting.

4.2 Linear scaling

By inspecting Eqs. (13), (14), (23), (24), (26) and (27) it is
easy to realize that if the computational cost associated
to the quantities y[x], z[x] and z�[x] increases linearly
with the number of tesserae, then the whole cost per
iteration will also grow linearly.

The definitions of y[x], z�[x] and z[x] (Eqs. 10, 11, 12)
state that these ‘‘kernels’’ cost formally as the square of
NTs. However, taking a closer look at those expressions,
it is easy to realize that all three quantities can be
computed in the framework of the FMM algorithm
[13, 32], thus achieving linear-scaling computational
cost. In particular, y[x] corresponds to the electrostatic
potential at the ith tessera generated by the (pseu-
do)charges xj located at the other NTs�1 tesserae, i.e.

yi½xj� ¼
X
j 6¼i

Sijxj ¼
X
j 6¼i

1

jsi � sjj
xj : ð29Þ

For the same arguments, z�[x] is the normal component
of the electric field at the ith tessera generated by the
(pseudo)charges xj located at the other NTs�1 tesserae,

z�i ½xj� ¼
X
j 6¼i

D�ijxj ¼ �
X
j 6¼i

ðsi � sjÞ
jsi � sjj3

xj

 !
� n̂i : ð30Þ

Finally, z[x] is the sum of the ‘‘normal fields’’ generated
by the (pseudo)charges xj at the other NTs�1 tesserae,
i.e.

zi½xj� ¼
X
j 6¼i

Dijxj ¼ �
X
j 6¼i

ðsi � sjÞ � n̂j

jsi � sjj3
xj ; ð31Þ

where the presence of the n̂j vectors prevents the use of
the usual FMM approach ‘‘as is’’. However, setting
sij ¼ si � sj and separating the components of the scalar
product, we end up with

zi½xj� ¼ �
X
j 6¼i

ðsijÞx
jsijj3

ðn̂jÞxxj �
X
j 6¼i

ðsijÞy
jsijj3

ðn̂jÞyxj

�
X
j 6¼i

ðsijÞz
jsijj3

ðn̂jÞzxj ; ð32Þ

where each summation can be obtained as the c compo-
nent of the electric field generated by the pseudocharges
fðn̂jÞc xjg for c ¼ x; y; z. Thus, a generalization of the
FMM procedure has been implemented which carries out
three far-field calculations using pseudocharges, skipping
two field components each time, while the near-field
contribution includes explicitely the n̂j vectors.

A final note about linear scaling concerns the speed/
accuracy tradeoff in the application of the FMM. The
cost of FMM is controlled mainly by two parameters:
the box length (boxlen), which defines what is within the
near-field of a given point in space, and the highest de-
gree of the multipole expansion (lmax) used to represent

the local potential generated by a set of charges. Since
the cost of FMM formally increases as Oðp3Þ where p
is the length of the multipole expansion, it is very
important to find the lowest value of lmax which ensures
at least microhartree accuracy. On the other hand, as
boxlen is increased, the cost of the near-field part
increases while the cost of the far-field term decreases.
We tested various combinations of lmax and boxlen
values on the chemical systems discussed in the following
section, using both the PCM formulations outlined in
Eqs. (6) and (7), and our conclusion was that lmax=6
and boxlen=6.0 Å strictly ensure less than microhartree
accuracy in the final free energy. Such a choice is rather
conservative, but it is required if energy derivatives are
to be computed.

5 Numerical applications

5.1 Performance of the new cavity code

Some performance results for the new cavity code are
shown in Fig. 1. All the calculations were carried out

Fig. 1. Computation time (CPU) (seconds, with Athlon MP
1900+) to build the cavity and to compute the analytical
derivatives of the tesserae position and surface area with respect
to the nuclear coordinates: a a-helix polyalanine from 10 to 200
residues and b water clusters from 30 to 300 water molecules. In
both cases the average area of the tesserae was set to 0.05 Å2
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with an AMD AthlonMP 1900+ machine. Two kinds
of chemical systems were considered: (1) a series
of polyalanines Ac-(Ala)n-NMe (Ac=acetyl, NMe=
N -methylammino) in the a-helix conformation (w ¼
�40:0� and / ¼ �60:0�) ranging from 10 to 200
alanine residues, i.e. from 112 to 2012 atoms and (2)
a set of water clusters of increasing size from 30 to
300 molecules. We chose these two sets of structures
in order to carefully assess the scaling behavior of
the computation time. Indeed, while the shape of the
polyalanines is highly anisotropic in one direction,
the shape of the water clusters is much more isotropic.
Linear structures like the polyalanines could lead to a
biased evaluation in favor of the low scaling of a
given algorithm, while globular ones represent a much
tough and unbaised benchmark.

The SES cavity was generated in all cases and the
average surface area of the tesserae was set to 0.05 Å2,
which is an extremely small value if compared to the
one recommended for ab initio calculations (0.2–0.4
Å2). The number of tesserae for the largest water
cluster was about 75000, while for Ac-(Ala)200-NMe it
was over 322000. The timings corresponding to the
three major computational tasks have been reported
separately. The ‘‘spheres’’ time includes both the gen-
eration of the extra spheres required to smooth the
cavity surface and the production of the sphere’s NL
on the resulting set of spheres (the latter always being
negligible with respect to the former). The tesserae time
is the time taken to define all the spherical patches
from the polyhedron faces, to discard the faces com-
pletely buried and to properly cut the ones partially
exposed. The ‘‘derivatives’’ time corresponds to the
calculations of the analytical derivatives with respect to
the atomic coordinates of the position and the radius of
all the added spheres and the position and the surface
area of all the tesserae.

Our results confirm that in all cases the time required
to generate the tesserae (given the set of spheres and the
sphere’s NL) increases linearly with the number of
atoms. Both the spheres and derivatives steps show a

weak quadratic scaling which appears beyond 500
atoms. The effectiveness of the algorithms being used
and of their implementation is confirmed by the fact that
the scaling behavior of all three steps is the same for
both linear and globular molecular structures. More-
over, the residual quadratic scaling is due to the creation
of the added spheres required by the SES, and is likely to
affect also the derivatives time. Thus, a completely linear
scaling procedure is available for the generation of VdW
and solvent-accessible surfaces.

5.2 Polyalanines

In the case of a classical solute, the PCM reaction field
computed by Eqs. (6) and (7) should be identical since
for such solutes there is no ‘‘outlying charge’’. To verify
this conclusion, we performed a series of PCM/MM
calculations of the relative stability (DE) in aqueous
solution, of polyalanines Ac-(Ala)n-NMe at two differ-
ent conformations: the a-helix conformation (w ¼
�40:0� and / ¼ �60:0�) and the ‘‘extended’’ conforma-
tion (w ¼ 180:0� and / ¼ 180:0�). The Amber force field
was used throughout and we computed the difference in
the relative stability (DDE) of the two conformations as
predicted by the two PCM approaches of Eqs. (6) and
(7). In Table 1 are collected the DE and the DDE
computed for a series of Ac-(Ala)n-NMe with n starting
from 10 and growing up to 200, using tesserae with an
average surface area of 0.4 Å2. The discrepancy between
the relative stability computed by the two equations
grows with the size of the system, but remains under 1%
of the DE. Although this result substantially confirms the
equivalence of the two PCM formulations in the case of
classical solutes, we investigated this problem further.
First, we recomputed all the energy differences in Table 1
enforcing the Gauss’ law, i.e. scaling the polarization
charges so that their sum exactly matches the sum of the
solute charge. Including such a correction, the discrep-
ancy between the results of Eqs. (6) and (7) did not
change. Thus, we focused on the smallest system, i.e.

Table 1. Polarizable continuum
model (PCM)/molecular me-
chanics (MM) calculations of
the relative stability of the
a-helix and extended con-
formations of polyalanines of
increasing size. All energies are
in kilocalories per mole. The
convergence threshold on the
polarization charges is 10�9

Number of
alanine units

Energy DE DDE

a-helix Extended

PCM model as in Eq. (6)
10 )49.85 4.96 )54.81
20 )71.94 45.27 )117.20
40 )116.30 125.90 )242.20
80 )204.93 287.18 )492.11
100 )248.99 368.65 )617.64
150 )360.69 570.63 )931.32
200 )471.79 772.45 )1244.24

PCM model as in Eq. (7)
10 )49.81 4.80 )54.61 0.20 (0.37%)
20 )72.07 44.64 )116.71 0.49 (0.42%)
40 )116.38 124.33 )240.72 1.49 (0.62%)
80 )204.99 283.73 )488.72 3.39 (0.69%)
100 )249.24 363.74 )612.98 4.66 (0.76%)
150 )359.95 563.17 )923.11 8.21 (0.89%)
200 )470.98 762.52 )1233.49 10.75 (0.87%)
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Ac-(Ala)10-NMe, and we recomputed the energy differ-
ences by increasing the accuracy of the finite-elements
integration. We reduced the average surface area of the
tesserae from 0.4 to 0.02 Å2, increasing their number up
to about 40000 for the a-helix conformation and 50000
for the ‘‘extended’’ structure. As shown by the results
collected in Table 2, by increasing the surface integration
accuracy the energy differences computed by Eqs. (6)
and (7) become even closer. Thus we conclude that, for a
classical solute, the two formulations of the PCM
equations described in Sect.3 give essentially the same
result as expected. The residual discrepancy can be

significantly reduced by increasing the surface integra-
tion accuracy.

We proceed now to discuss the performances of the
iterative solver for the set of a-polyalanines.The compu-
tation times required to solve the PCM equations by
means of different algorithms are collected in Table 3:
DIIS and twoflavors of the conjugate gradientmethod for
nonsymmetric matrices, i.e. CGS and BiCGStab, each
using two preconditioning strategies (see Sect. 4). In all
cases we require a very tight convergence on the polari-
zation charges (10�9) on both their root mean square and
maximum changes. All the calculations were carried out

Table 2. PCM/MM calculations of the relative stability of the a-helix and extended conformations of Ac-(Ala)10-NMe at increasing number
of tesserae. The convergence threshold on the polarization charges is 10�9

Average size of
tesserae (Å2)

a-helix conformation Extended conformation DE
(kcal mol�1)

DDE
(kcal mol�1)

Number of
tesserae

Energy
(kcal mol�1)

Number of
tesserae

Energy
(kcal mol�1)

PCM model as in Eq. (6)
0.40 3016 )49.94 4009 4.96 )54.90
0.20 5133 )50.19 6756 4.40 )54.59
0.10 9440 )50.19 12232 4.33 )54.52
0.05 17121 )50.21 21642 4.15 )54.37
0.02 39597 )50.22 50106 4.13 )54.36

PCM model as in Eq. (7)
0.40 3016 )49.93 4009 4.80 )54.73 )0.17 (0.32%)
0.20 5133 )50.13 6756 4.34 )54.46 )0.13 (0.24%)
0.10 9440 )50.19 12232 4.28 )54.47 )0.06 (0.10%)
0.05 17121 )50.23 21642 4.19 )54.42 0.05 (0.10%)
0.02 39597 )50.27 50106 4.12 )54.39 0.03 (0.05%)

Table 3. PCM/MM calculations of the solvation energy of a-helix polyalanine of increasing size. The number of iterations and the total
computation time (seconds, with Athlon MP 1900+) are reported for various solution methods. The convergence threshold on the
polarization charges is 10�9

Number of
atoms

Number of
tesserae

DIISa CGS BiCGStab

PC type 1b PC type 2c PC type 1b PC type 2c

PCM model as in Eq. (6)
112 3090 15 4.69 15 8.76 13 7.98 15 8.62 13 8.12
212 5584 17 9.78 14 15.33 16 19.54 14 15.64 16 19.81
412 10550 18 20.94 15 33.41 16 40.15 13 28.99 15 36.92
612 15515 16 29.39 15 50.47 17 65.76 14 47.50 17 67.44
812 20655 16 40.05 16 72.62 19 101.88 14 65.55 17 92.60
1012 25531 18 55.01 17 95.64 18 124.16 17 95.69 18 122.16
1512 38009 26 123.83 21 188.75 22 254.69 19 172.66 21 239.15
2012 50523 20 130.95 16 193.20 20 322.36 17 203.04 18 295.55

PCM model as in Eq. (7)
112 3090 75 33.6 49 43.6 27 82.3 42 36.7 28 88.2
212 5584 160 147.3 75 136.4 43 242.3 62 113.4 41 237.7
412 10550 309 551.9 93 334.7 51 534.4 87 313.4 52 546.1
612 15515 317 858.5 140 752.4 61 938.4 112 609.4 63 963.4
812 20655 d 227 1669.4 104 2147.7 281 2059.5 127 2612.4
1012 25531 d 252 2297.1 102 2617.9 194 1769.0 113 2890.4
1512 38009 d d 229 9461.2 d 319 13120.0
2012 50523 d 392 7528.8 207 11200.8 d 248 13430.2

a DIIS extrapolation restarted every 20 iterations or near linear dependence
b Type 1 preconditioning (see text), i.e. Jacobi diagonal preconditioning
c Type 2 preconditioning (see text), i.e. sphere-based block-diagonal preconditioning
d Convergence not reached within 400 iterations

97



using the developmental version of the Gaussian package
[33] on anAthlon 1900+processor. The PCMmodel as in
Eq. (6) is not only computationally simpler than the one
of Eq. (7), it is also different in its physical bases since it
involves only an r�3 dependence on the separation of the
polarization charges. Thus, the polarization charges are
‘‘more decoupled’’ and the solution of the linear system is
found in a smaller number of iterations. On the other
hand, Eq. (7) contains terms that go as r�1 and couple
more tightly the polarization charges,making the iterative
solutions more difficult and slower. In this case, the DIIS
approach fails to converge for medium and large systems
and it takes an excessive number of iterations for the
smaller ones. The two conjugate gradient schemes are
both more effective and ensure convergence, provided
that a good preconditioning is used. The convergence rate
(number of iterations) of CGS and BiCGStab is sub-
stantially equivalent in the solution of Eq. (6), while for
Eq. (7) the CGS algorithm is faster, especially using the
sphere-based block-diagonal preconditioning (type 2).
The average time per iteration is reported in Fig.2 as a
function of the system size. All solvers show linear-scaling
computational cost, confirming the effectiveness of
the FMM code for computing the quantities defined in

Eqs. (10), (11) and (12). This linear scaling behavior is
confirmed if the computation time per iteration is plotted
with respect to the number of atoms since in the case of
linear structures the average surface area per atom (i.e. the
average number of tesserae per atom) is constant. Finally,
we note that the cost per iteration includes the precondi-
tioning: while the cost of the diagonal preconditioning
(type 1) is linear scaling by construction, it is significant
that also the sphere-based block-diagonal approach (type
2) shows linear-scaling behavior. The time per iteration
required by the DIIS solver is significantly shorter if
compared to the conjugate gradient ones. The costs of
CGS and BiCGStab are very similar when the same pre-
conditioning scheme is used, although the sphere-based
preconditioning turns out to be computationally more
expensive, especially in the solution of Eq. (7).

5.3 Water clusters

Most of the comments made on the performance of the
different solution schemes in the case of a-polyalanines
hold also for water clusters. Generally speaking, the
water clusters we considered are smaller systems with
respect to the set of a-polyalanines, the largest one
including 300 molecules. Moreover, considering the
number of tesserae, i.e. the total surface area of the
solute–solvent boundary, the water cluster of 300
molecules should be compared to the Ac-(Ala)60-NMe
system, which is made by about 600 atoms. Thus, the
differences in the behavior of the various solution
algorithms can be related to either the smaller size of
the system or the different shape of the structure (linear
vs globular) or to both these factors. The computation
times required to solve the PCM equations for a set of
water clusters from 30 to 300 molecules are collected in
Table 4. As previously said, since most of the comments
made for a-polyalanines hold also here, we rather point
out the differences that exist between the results obtained
for the two sets of structures. The conjugate gradient
methods using the diagonal preconditioning never fail to
converge for this set of water clusters, but show a
strongly irregular behavior in the solution of Eq. (7)
using CGS. The rate of convergence of CGS and
BiCGStab, using sphere-based preconditioning, is in
this case the same not only for Eq. (6), but also for Eq.
(7). Comparing the results for the largest water cluster
with the ones obtained for a-polyalanine with approx-
imately the same number of tesserae, it turns out that the
solution of Eq. (6) shows basically the same trends, while
as far as Eq. (7) is concerned, the convergence rate is
slower and the use of the sphere-based rather than the
diagonal preconditioning scheme appears to be less
effective for globular structures than for linear ones. The
linear growth of the computation time per iteration is
shown in Fig. 3 with respect to the system size. We point
out that this linear scaling behavior is perfectly consis-
tent with the use of the FMM to compute the
interactions among the polarization charges. Moreover,
in the case of water clusters, and of globular structures in
general, if the computation time per iteration is plotted
with respect to the number of atoms, a sublinear scaling

Fig. 2. Polarizable continuum model (PCM)/Molecular mechanics
(MM) calculations of the solvation energy of a-helix polyalanine
of growing size. a PCM model as in Eq. (6); b PCM model as in
Eq. (7). Average CPU time per iteration (seconds, with Athlon MP
1900+) using different solution algorithms
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is achieved as the average number of tesserae per atom
decreases with the increase of the size of the system.

6 Conclusion

In this contribution we reported a new and low-scaling
implementation of the PCM method for computing the
solvent reaction field. This approach is applicable to
classical, quantum and hybrid quantum/classical solutes.
In our analysis of the computational cost we did not
consider the cost of computing the solute electrostatic
potential or electric field on the tesserae since this is
usually negligible in the case of classical solutes, while it
largely depends on the advances in the technology for
computing one-electron integrals in the case of quantum
solutes. The cost of generating the tesserae and comput-
ing their derivatives scales now linearly for system sizes
up to about 500 atoms, while for larger systems a weak
quadratic dependence is observed. On the other hand,
the cost per iteration of the iterative solver shows perfect
linear scaling even for globular solutes. This is due to the
use of the FMM to compute the electrostatic interaction
of the polarization charges among themselves. The
performances of different iterative solvers (DIIS, CGS
and BiCGStab) and preconditioning strategies have been
assessed. We demonstrated the superiority of the DIIS
approach in the special PCM formulation for classical
solutes, while for the general form of the PCM equations
the preconditioned CGS method is recommended.
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Table 4. PCM/MM calculations of the solvation energy of water clusters of increasing size. The number of iterations and the total
computation time (seconds, with Athlon MP 1900+) are reported for various solution methods. The convergence threshold on the
polarization charges is 10�9

Number of
atoms

Number of
tesserae

DIISa CGS BiCGStab

PC type 1b PC type 2c PC type 1b PC type 2c

PCM model as in Eq. (6)
90 3144 19 6.6 13 8.6 15 10.2 13 8.4 16 11.4
180 5011 15 9.0 14 15.5 15 18.0 13 14.1 15 18.3
270 6893 18 15.7 16 24.9 15 27.5 14 23.0 15 26.6
360 8257 22 21.7 14 26.8 17 37.5 15 28.4 17 36.0
450 9821 26 30.0 19 42.3 19 50.6 19 41.3 17 46.2
900 15179 20 37.2 17 58.2 19 89.3 16 55.0 18 82.8
PCM model as in Eq. (7)
90 3144 195 91.1 55 52.0 33 60.1 44 41.5 35 62.6
180 5011 128 112.7 67 117.2 33 99.1 59 104.0 35 103.6
270 6893 d 102 259.2 52 216.1 161 406.3 67 265.5
360 8257 d 106 331.9 53 261.2 87 275.3 55 269.2
450 9821 d 173 659.3 99 582.9 225 858.3 120 703.5
900 15179 d 190 1097.5 117 1097.6 161 929.3 108 1010.6

a DIIS extrapolation restarted every 20 iterations or near linear dependence
b Type 1 preconditioning (see text), i.e. Jacobi diagonal preconditioning
c Type 2 preconditioning (see text), i.e. sphere-based block-diagonal preconditioning
d Convergence not reached within 400 iterations

Fig. 3. PCM/MM calculations of the solvation energy of water
clusters of increasing size. a PCM model as in Eq. (6); b PCM
model as in Eq. (7). Average CPU time per iteration (seconds, with
Athlon MP 1900+) using different solution algorithms
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